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1. Introduction 

The numerical solution for Newton’s cooling law is 

a long and old topic. Newton's cooling law, written in 

differential equation from have been devised over the 

years to solve such equations, and surprisingly, the old 

well-established methods such as the Runge-Kutta 

methods are still the foundation for the most effective 

and widely-used codes [1]. Nevertheless, there are 

several kinds of problems that numerical methods cannot 

handle effectively, which are said to be stiff. Stiff 

differential equations are categorized as those whose 

solutions or different components of a single solution 

evolve on very different time scales occurring 

simultaneously [2]. Consider, if one component of the 

solution has a term of the form where is a large negative 

value. This component, which is called the transient 

solution, decays to zero much more rapidly, as increases, 

than other slower components of the solutions. 

Alternatively, consider a case where a component of the 

solution oscillates rapidly on a time scale much shorter 

than that associated with the other solution components. 

For a numerical method that makes use of derivative 

values, the fast component continues to influence the 

solution. As consequence, the selection of the step size 

in the numerical solution is problematic. This is because 

the required step size is governed not only by the 

behaviour of the solution but also by that of the rapidly 

varying transient which does not persist in the solution 

that is being monitored. The numerical values occurring 

in nature are frequently such as to cause stiffness [3,4]. 

Therefore, a realistic representation of a natural system 

using a differential equation is likely to encounter this 

phenomenon. An example is the field of chemical 

kinetics. Ordinary differential equations (ODEs) 

describe in this field is a reaction of various chemical 

species to form other species. The stiffness in such 

systems is a consequence of the fact that different 

reactions take place on vastly different time scales. 

Another important class of stiff ODEs originates 

from the application of the general approach the Method 

of Lines (MoL) to stiff time-dependent Partial 

Differential Equations (PDE). In this method, the PDEs 

Abstract: Solving the differential equation for Newton’s cooling law mostly consists of several 
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cannot be solved efficiently via some of these methods. This research will try to overcome such 

problems and compare results from two classes of numerical methods for heat equation problems. 

The heat or diffusion equation, an example of parabolic equations, is classified into Partial 

Differential Equations. Two classes of numerical methods which are Method of Lines and Runge-

Kutta will be performed and discussed. The development, analysis and implementation have been 

made using the Matlab language, which the graphs exhibited to highlight the accuracy and efficiency 

of the numerical methods. From the solution of the equations, it showed that better accuracy is 

achieved through the new combined method by Method of Lines and Runge-Kutta method. 

Keywords: Heat equation, Partial differential equation, Runge-Kutta method, Method of Lines 

 



   Manshoor, B. et. al., Journal of Complex Flow, Vol. 3 No. 1 (2021) p. 21-25 

 
 

22 
Published by FAZ Publishing 

http://www.fazpublishing.com/jcf 

 

system is first spatially discretized, which results in a 

stiff coupled system of ODEs in time only. Then, any 

well-established numerical method is applied to achieve 

an accurate approximate solution to the problem [5]. Two 

broadly applicable techniques include Finite Difference, 

which is local methods and Spectral Methods, which are 

global methods. 

For this research, the MoL is applied to approximate 

the parabolic type of PDE problem to reduce it to simpler 

ODEs. The parabolic PDE, which is a diffusion type 

equation, namely heat equation, produced a system of an 

ODE. This system of ODEs is then represented in matrix 

form which, eigenvalues will be calculated. Therefore, a 

typical purpose of this research is to propose an efficient 

numerical method for the numerical solution of stiff PDE 

in heat problem. This research is carried out such that the 

resulting numerical methods will not be time and cost 

consuming anymore. 

 

2. Previous Works 

Mechanical, chemical, economic, financial systems, 

even natural environment can be described at a 

macroscopic level by a set of PDEs governing averaged 

quantities such as density, temperature, concentration, 

velocity and so on [6]. The field of PDEs is broad and 

varied, as is inevitable because of the great diversity of 

physical phenomena that these equations model. Much 

of the variety is introduced by the fact that practical 

problems involve different geometric classifications 

such as hyperbolic, elliptic or parabolic; multiple space 

dimensions, systems of PDEs, different types of 

boundary conditions, varying smoothness of the initial 

conditions, variable coefficients and frequently, 

nonlinearity [7]. The earliest detection of stiffness in DEs 

is around 1950s, during the earlier digital computer by 

the two chemists, Curtiss and Hirschfelder [8]. They 

named the phenomenon and spotted the nature of 

stiffness (stability requirement dictates the choice of the 

step size be very small). At about this time several 

mathematician and physicists participated in 

independent research for handling and evading the 

problems posed by stiff DEs [9]. 

Considerable efforts have gone into developing 

numerical integration for stiff problems, and hence, the 

problem of stiffness was brought to the attention of the 

mathematical and computer science community. The 

idea of using spectral representations for numerical 

solutions of ODEs goes back at least to Lanczos in 1938 

[10]. Spectral methods are a class of techniques used in 

applied mathematics and scientific computing to 

numerically solve certain PDEs, often involve the use of 

Fast Fourier Transform (FFT) [11]. The spectral methods 

have been widely used for spatial discretization in the 

context of solving time dependent PDEs since the early 

1970s [12-14]. 

 

Given that stiffness has extensive practical 

applications and arises in many physical situations, the 

demand for special techniques that permit the use of a 

step size governed by the rate of change of the overall 

solution is very great [15]. However, even though 

numerical integrations of stiff systems with constant 

coefficients have been considered in detail, a stiff DE 

does not lend itself readily to numerical solution by 

classical methods. In principle, the stability region of the 

integration method must include the eigenvalues of the 

discrete linear operator of a stiff PDE to be stable [16]. 

However, discretization of a nonlinear PDE leads to 

a large nonlinear system of equations that must be solved 

at each time step. This renders implicit schemes costly to 

implement. Various methods have been proposed to 

avoid the difficulties that appear when trying to solve 

nonlinear equations with an implicit method [17]. A 

popular strategy is to combine pairs of an explicit 

multistep formula to advance the nonlinear part of the 

problem and an implicit method to advance the linear 

part. This strategy forms the basis of the so-called 

Implicit-Explicit (I-E) schemes. These schemes were 

proposed to solve stiff PDEs late 1970’s. Other more 

complicated forms of the I-E schemes such as the Runge-

Kutta method [18]. 

Most of the research focuses on the accuracy and 

stability of the numerical methods. The system of ODEs 

obtained from the semi-discretization of PDEs is usually 

stiff and expensive to solve. Thus, the MOL has been 

proposed to fulfil the needs, which is so far the most 

flexible method in spatial discretization to approximate 

the PDEs into a system of ODEs. 

 

3. Method of Solution 

Differential equations are the most common and 

important mathematical models in science and 

engineering. Many phenomena in nature may be 

described mathematically by independent variables and 

parameters. Given by a function of position and time, 

typical PDEs arises if one studies the flow quantities like 

density, concentration, heat and so on. 

3.1 Heat Equation 

The study of heat problems started in the 18th 

century. Many researchers have been published 

numerical methods for heat problems. However, the 

comparison of these methods is usually restricted to the 

analysis of the stability of the schemes used. The 

parabolic type of PDEs, which is a diffusion equation and 

known as the heat equation, is used as an example of stiff 

problems in this research. Parabolic problems describe 

evolutionary phenomena that lead to a steady state 

described by an elliptic equation. In this research, we will 

solve the following PDEs, which known as one 

dimensional heat equation. 

 2
2

2
for 0 1

u u
x

t x


 
=  

 

 (1) 



   Journal of Complex Flow, Vol. 1 No. 1 (2021) p. 21-25 

 

 

23 
Published by FAZ Publishing 

http://www.fazpublishing.com/jcf 

3.2 Method of Lines 

The Method of Lines (MoL) is a technique that 

enables the conversion of PDEs into sets of ODEs that 

are equivalent to the former PDEs. The basic idea behind 

the MoL methodology is discretized along with the 

spatial coordinates only, this approximation is what we 

called semi-discretization. If discretize in space and 

leave time continuous, a system of ODEs obtained. The 

focus of the MoL is the calculation of accurate numerical 

solutions. Thus, one of the salient features of the MoL is 

the use of existing and generally well-established 

numerical methods for ODEs. The derivative of the 

PDEs heat problem is approximated by a linear 

combination of function values at the structured grid 

points. Arbitrary order approximations can be derived 

from a Taylor series expansion. 
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A geometric interpretation of the different equations is 

shown in Fig. 1. The derivative for the function of x can 

be approximated in many ways. The most common are 

called the forward, backward and central approximation, 

all of which are drawn and indicated on Fig. 1. 

 

Fig. 1 – Geometric interpretations of the first-order finite 

difference approximation related to central difference 

approximation 

 

It is important to use the same order of 

approximation accuracy for the discretization in space as 

for the discretization in time achieved by the numerical 

integration algorithm. Thus, to integrate the set of ODEs 

with a 4th order method, 4th order accurate discretization 

formula is needed in the discretization of .xxu  

3.3 Runge-Kutta Method 

System of ODEs can be obtained by discretize the 

equation in space and leave time continuously. The 

system can be solved by a standard method, Runge-Kutta 

method. Currently, there are two general ways to solve 

stiff PDEs numerically. The first approach is based on 

implicit methods and the second uses explicit stabilized 

Runge-Kutta methods. Implicit methods are great for 

very stiff problems of not very large dimensions, while 

stabilized explicit methods are efficient for very big 

systems of not very large stiffness and real spectrum.  

The Runge-Kutta method is single-step methods, 

however with multiple stages per step. They are 

motivated by the dependence of the Taylor methods on 

the specific initial value problem. These new methods do 

not require derivatives of the right-hand side function 

and are therefore general-purpose initial value problem 

solvers. For this research, the 3rd order Runge-Kutta 

method was used to solve the ODEs system for heat 

equation. The new 3rd order Runge-Kutta method is 

developed to pair with the MoL in the attempt to solve 

the stiff problems that arises in heat problem. 
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The equation (3) are known as the stages of the Runge-

Kutta method, correspond to the different estimates for 

the slope of the solution. 

 

4. Results and Discussion 

Numerical methods used to solve mathematical 

models should be robust. It should be reliable and give 

accurate values for a large range of parameter values. 

Sometimes, however, a method may fail and give 

unexpected results. Then it is important to know how to 

investigate why an erroneous result has occurred and 

how it can be remedied. In this section, the results and 

discussion on the stability analysis of the model will be 

presented. 

4.1 Stability Analysis 

The stability analysis of the MoL for PDEs 

represents the most important factor for their solutions 

and at the same time is a critical factor that should be 

handled carefully. The importance lies in its unique 

ability to judge acceptable solution for the given 

equation, of being critical is due to its dependence on the 

nature of the eigenvalues of the matrix representation 

connection with their number. The stability analysis 

constitutes the essential study of the numerical solution 

of PDEs, in general, this is because such study provides 

the means by which the step size and the numerical 

integration scheme for the given DEs could be selected 

so as to secure manageable numerical solution. 

Regarding the MoL for parabolic PDE in two variables, 

it can be classified according to the nature of the resulting 

system in connection with the direction of discretization 

as shown in Table 1. 
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Table 1 – Nature of system in connection with the 

direction of discretization 

Discretization 

direction 

Nature of the resulting 

system 

x - direction Boundary type in ODEs 

t - direction Initial types in ODEs 

 

To analyze the stability of equation (1), the spatial 

derivative should be replaced. By choose five-point 

difference approximations for the second derivative, 

submit these derivatives into equation (1) will give the 

ODEs that must be integrated numerically at the spatial 

grid points. Note that all negative eigenvalues given by 

equation (1) have negative real parts, which mean that 

the system of first-order ODEs is stable. 

4.2 Testing Case 

The Finite Different, MoL and Explicit Runge-Kutta 

schemes was implemented for solving the heat equation 

by using Matlab. By simulation of the Matlab code gave 

the results as shown in Fig. 2 to Fig 5., which shows the 

behaviour of the numerical solutions for the heat 

problems from the collaboration of MoL and Explicit 

Runge-Kutta schemes. 
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Fig. 2 – The graph of the MoL + Explicit Runge-Kutta 

method at Δx=0.2 and Δt=0.06 
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Fig. 3 – The graph of the MoL + Explicit Runge-Kutta 

method at Δx=0.2 and Δt=0.3 
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Fig. 4 – The graph of the MoL + Explicit Runge-Kutta 

method at Δx=0.1 and Δt=0.06 
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Fig. 5 – The graph of the MoL + Explicit Runge-Kutta 

method at Δx=0.1 and Δt=0.3 

 

From the figures, it shows that the combination of 

the MoL and Explicit Runge-Kutta method loses a few 

points at Δx = 0.2 but gains back the accuracy at the other 

points. Showing that finer mesh typically results in a 

more accurate solution. So, we can say that, as we 

decrease the space mesh size and time step size, the 

solution converges to the exact solution. 

 

5. Conclusion 

This research deals with two methods which are 

combined to combat stiffness occurred in the PDEs. The 

first method is the MoL, which are used to transform the 

PDEs into a system of ODEs through semidiscretization 

on the spatial variable. The second method is the explicit 

Runge-Kutta method of order three, which is applied in 

the final step in completing the task to crack the stiff 

problem. Theoretical analysis by earlier research 

showing that the mathematical model been solved using 

finite difference method. The result obtained showed that 

a better accuracy is achieved through the new combined 

method, MoL and explicit Runge-Kutta. The 

development, analysis and implementation have been 

made using the Matlab language, which the graphs 

exhibited to highlight the accuracy and efficiency of the 

numerical methods.  
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Even though the combination of the five-point MoLs 

and explicit Runge-Kutta of order three shows some 

loses at the but gains back the accuracy within the rest 

points along the spatial coordinates. In the previous 

chapter, we showed that the MoL and explicit Runge-

Kutta method has significant advantages to solve PDEs. 

The combination of five-point MoL and the explicit 

Runge-Kutta method brings a new finding that it works 

better if to be compared to the finite difference method.  
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